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Abstract: Recent work in color difference has led to the
recommendation of CIEDE2000 for use as an industrial
color difference equation. While CIEDE2000 was designed
for predicting the visual difference for large isolated
patches, it is often desired to determine the perceived dif-
ference of color images. The CIE TC8-02 has been formed
to examine these differences. This paper presents an over-
view of spatial filtering combined with CIEDE2000, to
assist TC8-02 in the evaluation and implementation of an
image color difference metric. Based on the S-CIELAB
spatial extension, the objective is to provide a single refer-
ence for researchers desiring to utilize this technique. A
general overview of how S-CIELAB functions, as well as a
comparison between spatial domain and frequency domain
filtering is provided. A reference comparison between three
CIE recommended color difference formulae is also pro-
vided. © 2003 Wiley Periodicals, Inc. Col Res Appl, 28, 425–435, 2003;
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INTRODUCTION

Industrial color difference equations have been the topic of
tremendous research effort over the past 30 years. These
efforts have recently culminated with the recommendation
by CIE TC1-47 of the CIEDE2000 color difference equa-
tion. This equation was derived from several data sets,
though all the sets shared some commonality. Each dataset
was comprised of visual judgments of simple patches.1 Thus
the CIEDE2000 equation is able to accurately predict the
perceived color differences between simple patches.

Often when dealing with image reproduction systems it is
desired to determine the perceived differences between im-

ages. Traditionally this has been accomplished by using a
standard color difference formula on a pixel-by-pixel basis
and then examining statistics such as mean, median, max,
etc. This often produces undesirable results when dealing
with images that have been spatially altered, such as those
processed with a halftone algorithm. Although not designed
for use with such complex stimuli, such as those found in
digital color images, the CIEDE2000 formula can be ex-
tended using a series of spatial filters. Zhang and Wandell
describe this technique with the extension of the standard
CIELAB �E equation, known as the S-CIELAB metric.2

This paper illustrates the use of similar spatial filtering with
the CIEDE2000 color difference formula, as shown in Fig. 1.

IMPLEMENTATION

Device Independent and Opponent Color
Transformation

To determine the perceived color difference between
image pairs, such as those shown in Fig. 2, it is very
important to have a well-characterized image device. The
first step in using S-CIELAB is to transform the input
images into a device independent space, such as LMS cone
responsivities or CIE XYZ tristimulus values. This can be
accomplished though device characterization, such as the
GOG model for computer CRT displays.3 The primary
advantage S-CIELAB offers over a standard color differ-
ence formula is the spatial filtering pre-processing step. This
filtering is performed in an opponent color space, containing
one luminance and two chrominance channels.2 These chan-
nels were determined though a series of psychophysical
experiments testing for pattern color separability.4 The op-
ponent channels, AC1C2, are a linear transform from CIE
1931 XYZ or LMS as shown in Eq. 1 and Fig. 3. One
important note about the AC1C2 opponent color space is that
the three channels are not completely orthogonal. The
chrominance channels do contain some luminance informa-
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FIG. 1. Flow Chart Illus-
trating Use of Spatial Fil-
ters with Color Difference
Equations.

FIG. 2. Original Image and Cluster
Dot Halftone Image.
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tion, and vice-versa. This is illustrated in Fig. 4, as the
“white” lighthouse contains additional chroma information
in both the red-green channel, and the blue-yellow channel.
The lack of orthogonality has the potential to create color
fringes when spatially filtered with different size filters for
each channel. As S-CIELAB is not designed to render
images, but rather to calculate color differences, this does
not cause complications. The opponent color transform also
creates negative response for the achromatic channel at
certain wavelengths. This, along with the lack of orthogo-
nality, indicates that the transform has potential for im-
provement,
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Spatial Filtering via Convolution

After both images are transformed into the opponent
color space, the independent channels can be spatially fil-
tered, using filters that approximate the contrast sensitivity
functions (CSF) of the human visual system. This can be
accomplished using either a series of convolutions in the
spatial domain, or by multiplications in the frequency do-
main. The traditional S-CIELAB model uses two-dimen-
sional separable convolution kernels. These kernels are unit
sum kernels, in the form of a series of Gaussian functions.
The unit sum was designed such that for large uniform areas
S-CIELAB predictions are identical to the corresponding
CIELAB predictions. Eqs. 2 and 3 show the spatial form of
the convolution kernels.

filter � k �
i

wiEi (2)

Ei � kie
�� x2�y2�/�i

2

(3)

The parameters k and ki normalize the filters such that they
sum to one, thus preserving the mean color value for uni-
form areas. The parameters wi and �i represent the weight
and the spread (in degrees of visual angle) of the Gaussian
functions, respectively.

Table I shows these values for the kernels used in S-
CIELAB. It is important to note that these values differ

FIG. 4. AC1C2 Representation of Image (Pseudo-Color).

FIG. 3. LMS and AC1C2 Reponse Functions.

TABLE I. Weight and spread of gaussian convolution
kernel.

Filter Weight (wi) Spread (�i)

Achromatic (i � 1) 1.00327 0.0500
Achromatic (i � 2) 0.11442 0.2250
Achromatic (i � 3) �0.11769 7.0000
Red-Green (i � 1) 0.61673 0.0685
Red-Green (i � 2) 0.38328 0.8260
Blue-Yellow (i � 1) 0.56789 0.0920
Blue-Yellow (i � 2) 0.43212 0.6451
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slightly from the published values, as they are already
adjusted to sum to one.5

The separable nature of the kernels allows for the use of
two relatively simple 1-D convolutions of the color planes,
rather than a more complex 2-D convolution. This pre-
processing design feature allows S-CIELAB to be used as a
spatial extension to existing color difference calculations.2

The combination of positive and negative weights in the
achromatic channel creates a band-pass filter, as is tradi-
tionally associated with luminance contrast sensitivity func-
tions. The positive weights used for the chrominance chan-
nels create two low-pass filters. Fig. 5 illustrates the relative
sensitivity of the three spatial filters, as a function of cycles
per degree of visual angle, in both linear and log-log space.
These plots were generated by performing a discrete Fourier
transform on the convolution kernels.The spatial filtering
stage simulates the decrease in sensitivity that occurs in the
human visual system. As shown in Fig. 5, this blurring tends
to increase as a function of cycles-per-degree of visual
angle. In digital imaging applications, cycles-per-degree is a
function of both addressability and viewing distance. For
example, if a computer monitor is capable of displaying 72
pixels-per-inch (ppi) and is viewed at 18 inches then there
are roughly 23 digital samples per degree of visual angle.
This calculation is shown in Eq. 4.

Cyc/deg �
ppi

180

�
� tan�1� 1 inch

viewing distance�
(4)

To illustrate this point, the original and reproduced images
were filtered for three viewing distances, which correspond
to 10, 50, 100 pixels per degree. The results of the filtering
on the achromatic channel are shown in Fig. 6. All the

FIG. 5. Spatial filters of the S-CIELAB model. These filters
are designed to approximate the human Contrast Sensitivity
Function (CSF).

FIG. 6. Spatial blurring as a function of samples-per-degree. This can be thought of as increasing the viewing distance of
the image. If the images on the left span x degrees of visual angle, then the center image pair spans x/5 degrees, which the
images on the right span x/10 degrees.
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images in Fig. 6 are the same number of pixels. The image
on the left is viewed at a distance that corresponds to 10
pixels per degree of visual angle. The other images are
viewed at a distance of 5 and 10 times further away.
Therefore the total image itself subtends a smaller visual
angle, and the number of pixels per degree increases. The
halftone dots of the reproduced image are clearly visible
when viewed at 10 samples per degree, and become increas-
ingly less visible as the number of pixels per degree of
visual angle increase. This corresponds to actual perception
of halftone images. At close distances the individual dots
are noticeably visible, but as the viewing distance increases
the dots gradually disappear until the image appears to be
continuous tone. The blurring of the Red-Green color plane
is slightly greater than the achromatic channel, while that of
the Blue-Yellow color plane is greater still. This correlates
with the known behavior of the human visual system.7

Spatial Filtering via Frequency Modulation

If computationally feasible it might be desirable to per-
form the spatial filtering in the frequency domain, rather
than the spatial domain. This enables more precise specifi-
cation of the shape of the filter with fewer terms. Filtering
in the frequency domain is performed using a simple mul-
tiplication, rather than a series of convolutions. In order to
filter the image, the opponent channels must be first trans-
formed into their respective frequency representations. This
can be accomplished using a Fourier transform. Figure 7
shows the log of the frequency spectrum of the original
image, calculated via a discrete Fourier transform (DFT).

Once in frequency space, it is necessary to obtain fre-
quency representations of the opponent spatial filters. These
can be determined by taking the Fourier transform of the
convolution kernels, as in Fig. 5. Mathematically the con-
volution operator is identical to multiplication in the fre-
quency domain, so the results of the frequency filtering
would be identical to the results from the spatial convolu-
tion. The convolution kernels used in S-CIELAB are Gauss-
ian approximations of the human contrast sensitivity func-

tions. The relatively small size of the discrete convolution
kernels become Cosine approximations in the frequency
domain, rather than the Gaussian shape originally desired.
Specifying the filters purely in the frequency domain allows
for more precise control over the shape of the filter. Spec-
ification of the contrast sensitivity functions is another topic
that is heavily researched, and many formulae exist.7,8,9,10

A three parameter exponential model, described by
Movshon, is a simple description of the general shape of the
luminance CSF, which behaves similarly to the S-CIELAB
filter. This model is shown in Eq. 5.

csflum� f � � a � f c � e�b�f (5)

The parameters, a, b, and c can be fit to existing exper-
imental data, if available. Alternatively values of 75, 0.2,
and 0.8 for a, b, and c respectively fit reasonably well with
the S-CIELAB filters. Figure 8 plots the contrast sensitivity
function calculated using the above values, and the corre-
sponding frequency filter.

It is important to note that the above filter behaves as a
band-pass filter, peaking around 4 cycles-per-degree. Care-
ful consideration needs to be taken regarding the DC com-
ponent, 0 cycles-per-degree, of the filter. The DC compo-
nent is essentially the mean value of the image channel. For
simple patches, this mean value is the value of the patchFIG. 7. Fourier Transform of Original Image (log scale).

FIG. 8. Frequency filter for luminance channel, approxi-
mating the human contrast sensitivity function (CSF).
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itself. The existing color difference formulas are able to
accurately predict color differences of simple patches, so it
is important to keep this mean value constant. This can be
accomplished in several ways. Either the luminance contrast
sensitivity function can be truncated into a low-pass filter, or
it can be normalized such that the DC component is equal to
1. If the latter method is chosen, then the spatial filtering
behaves as a frequency enhancer as well as modulator.

To illustrate the importance of maintaining the DC com-
ponent, the original image above was filtered with a tradi-
tional band-pass luminance CSF. Prior to filtering, the Mean
L* value of the image was 47.94, with a standard deviation
of 24.18. When filtered with a band-pass filter that modu-
lates the DC component, the mean L* value is reduced to
34.42, with a standard deviation of 19.83. This same image,
when filtered with a band-pass filter normalized to 1.0 for
the DC component, maintains the original L* distribution.
Figure 9 shows the histogram of the L* distribution of both
filtered images. This large shift in overall lightness can
cause an unwanted loss of contrast or poor predictability of
large uniform patches. Therefore, it is strongly suggested
that the DC component is preserved when performing fre-
quency filtering.

There is considerably less available data for the chromi-
nance channel filters.4,6,11 The available data can be fit with
the sum of two Gaussian functions, as shown in Eq. 6.

csfchrom� f � � a1 � e�b1�f c1

� a2 � e�b2�f c2 (6)

Table II shows the values of the six parameters that were fit
to the Van der Horst and Poirson datasets. These data were
fit using a Newton-Rhapson nonlinear regression technique,
minimizing the sum of squares error between the model and
the data. The highest available spatial frequency in the data
was 18 cycles-per-degree, so higher frequencies needed to
be extrapolated. To help accommodate this extrapolation
the data sets were padded with zeros at several higher
frequencies. This padding also encourages the Gaussian

tails to cut-off at higher frequencies. The Poirson data were
first normalized so that they were on the same scale as the
Van der Horst data. Fig. 10 shows the normalized contrast
sensitivity functions of the opponent color filters.

The two-dimensional filters, as shown in Figs. 8 and 11,
are then multiplied with the discrete Fourier transform of
the individual opponent channels. The filtered images are
then transformed back into the spatial domain via an inverse
Fourier transform. This process can easily be extended to
handle orientation-specific aspects of the human visual sys-
tem, by using non-isotropic filters. Modulating the diagonal
orientations more would be able to predict the decreased
visibility of half-tone screens, as described by the oblique

FIG. 9. L* Distribution of DC Maintaining (solid) and Mod-
ulating (dashed) Filters. The DC Maintaining Filter is the
Recommended Technique.

TABLE II. Parameters for chrominance CSFs.

Parameter Red-Green Blue-Yellow

a1 109.1413 7.0328
b1 �0.0004 0.0000
c1 3.4244 4.2582
a2 93.5971 40.6910
b2 �0.0037 �0.1039
c2 2.1677 1.6487

FIG. 10. Normalized Opponent Color Contrast Sensitivity.
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effect. This is a future direction for enhancements to the
S-CIELAB model.

CIE XYZ and CIELAB

The filtered opponent channels are then transformed back
into CIE XYZ space using the inverse of Eq. 1, as shown in
Eq. 7.

� X
Y
Z
� � � 0.979 �1.535 0.445

1.189 0.764 0.135
1.232 1.163 2.079

�� A
C1

C2

� (7)

The filtered XYZ pixel values for both the original and the
test image are then transformed into the CIELAB space,
using Eqs. 8–10. It is necessary to know the tristimulus
values of the white point for the display device, Xn, Yn, Zn,
in order to calculate the CIELAB coordinates. This can be
determined through the device characterization.

L* � 116� Y

Yn
� 1/3

� 16, if
Y

Yn
� 0.008856

else, � 903.3� Y

Yn
� (8)

a* � 500�� X

Xn
� 1/3

� � Y

Yn
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Y
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� �
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Zn
� �

16

116��.
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COLOR DIFFERENCE FORMULA

Once the CIELAB coordinates are calculated for the filtered
images, color differences can be determined on a pixel-by-
pixel basis. The standard CIE �E*ab color difference equa-
tion is traditionally used with S-CIELAB, though it is rec-
ommended that a more perceptually uniform metric is
utilized. This section details the use of the newly recom-
mended CIEDE2000 color difference equation on the fil-
tered images.

In 1994, the CIE suggested a new formula for color
difference calculations that included lightness, chroma, and
hue weighting functions.12 This formula has been met with
much success. The CIE94 formula has recently been ex-
tended to include a interactive hue and chroma term to
improve performance for the blue region of color space,
correcting for perceived constant-hue nonlinearity.13 An
adjusted a* term, to improve performance of low-chroma
(gray) colors, was also in this new extension.1 In addition,
this formula includes a hue dependent function to correct for
perceived hue differences.14 The CIE has recommended the
use of this new color difference formula, CIEDE2000.

The first step of the CIEDE2000 formula is an adjustment
of the a* axis to correct for the color difference perception
of low chroma colors. This is accomplished using a modi-
fied Gaussian curve, similar to Morovic’s GCUSP func-
tion,15 on the mean chroma difference, as shown in Eqs.
11–13.

C*� x,y� � �a*
� x,y�

2 � b*
� x,y�

2 (11)

C� *� x,y� �
C*orig� x,y� � C*repro� x,y�

2
(12)

G� x,y� � 0.5�1 � � C� *
� x,y�

7

C� *
� x,y�

7 � 257� . (13)

Equation 13 is then used to calculate the lightness, chroma
and hue rectangular differences on a per-pixel basis for the
image pair.

a	� x,y� � �1 � G� x,y��a*� x,y� (14)

L	� x,y� � L*� x,y� (15)

FIG. 11. 2D Chrominance Filters. Red-Green on the Left,
Blue-Yellow on the Right.
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C	� x,y� � �a	� x,y�
2 � b*

� x,y�
2 (16)

h	� x,y� � tan�1�b*� x,y�

a	� x,y�
�. (17)

In each equation, the subscript [x,y] refers to the x-y coor-
dinates of each pixel for the image pairs. For this example,
the image pairs are referred to as the original and repro-
duced images.

�L	� x,y� � L	orig� x,y� � L	repro� x,y� (18)

�C� x,y� � C	orig� x,y� � C	repro� x,y� (19)

�h	� x,y� � h	orig� x,y� � h	repro� x,y� (20)

�H� x,y� � 2�C	orig� x,y�C	repro� x,y� � sin��h	� x,y�

2 �. (21)

Care must be taken when calculating hue angle differences
between the original and reproduced images, if the hue
angles reside in different hue quadrants. If the absolute
difference between the two hue angles is greater than 180
degrees, then it is important to add 360 to the smaller of the
hue angles, as shown in Eq. 22.

if ��h	� x,y�� � 180 then
min�h	orig� x,y�, h	rep� x,y�� � 360. (22)

When coding Eq. 22 in a computer program, it is often more
efficient to split the calculations into two separate steps, as
shown in Eq. 23.

if �h	� x,y� � 180 then �h	� x,y� � �h	� x,y� � 360
else if �h	� x,y� � �180 then �h	� x,y� � �h	� x,y� � 360 (23)

Next, the arithmetic mean lightness, chroma, and hue-angle
between the sample and batch images must be calculated.
These calculations are shown in Eqs. 24–26.

L� 	� x,y� �
L	orig� x,y� � L	rep� x,y�

2
(24)

C� 	� x,y� �
C	orig� x,y� � C	rep� x,y�

2
(25)

h� 	� x,y� �
h	orig� x,y� � h	rep� x,y�

2
(26)

Again, care must be taken when determining the mean hue
angle, if the hue values for the pixels reside in different
quadrants. Eq. 22 should be applied when calculating mean
hue as well.

Weighting functions are then calculated, to adjust for the
perceived color differences between lightness, chroma, and
hue in the CIELAB space. These weighting functions are
also calculated on pixel-per-pixel basis. The lightness and
chroma functions, SL, SC are shown in Eqs. 27 and 28.

SL� x,y� � 1 �
0.015�L� *� x,y� � 50�2

�20 � �L� *� x,y� � 50�2
(27)

SC� x,y� � 1 � 0.045C� 	� x,y� (28)

The hue weighting is a function of both hue angle and
chroma. First, the hue angle dependency is determined,
using Eq. 29. This is then combined with the chroma de-
pendency in Eq. 30.

T� x,y� � 1 � 0.17 cos�h�	� x,y� � 30� � 0.24 cos�2h�	� x,y��

� 0.32 cos�3h�	� x,y� � 6� � 0.20 cos�4h�	� x,y� � 63� (29)

SH� x,y� � 1 � 0.015C� � x,y� � T� x,y� (30)

The blue region of CIELAB is known to be highly nonlinear
in regards to hue angle and chroma interaction. Thus, a
rotation function has been created to compensate for this
interaction. This rotation starts with a chroma GCUSP func-
tion, as shown in Eq. 31.

RC� x,y� � 2.0� C� *
� x,y�

7

C� *
� x,y�

7 � 257 (31)

This is followed by a hue angle dependency, as shown in
Eq. 32.

��� x,y� � 30e���h 	� x,y��275
/ 25�2
(32)

The rotation function, Eq. 33, is applied.

Rt� x,y� � �sin�2��� x,y��Rc� x,y� (33)

Finally, the total color difference for each pixel can be
calculated, using Equation 34.

�E� x,y� � �� �L	� x,y�

KLSL� x,y�
� 2

� � �C	� x,y�

KCSC� x,y�
� 2

� � �H	� x,y�

KHSH� x,y�
� 2

� RT� x,y�� �C	� x,y�

KCSC� x,y�

�H	� x,y�

KHSH� x,y�
�

(34)

The parametric weights, KL, KC, KH can be fit to existing
data sets, if they exist. For most imaging applications, these
weights are unknown and should be all set to 1.0.

EXAMPLE AND DATA REDUCTION

Color Difference Formulae

The original design of S-CIELAB was a spatial pre-
processing prior to standard color difference calculations.
This allows for great flexibility with the choice of color
difference formulas. The result of the calculations is an error
image, where each pixel represents the perceived error at
that given point. Fig. 12 shows the scaled CIEDE2000 error
image for the halftone image pair above, when viewed at 30
pixels per degree of visual angle. The error image can be
very valuable for pinpointing systematic or gross errors in
an imaging chain.

Many times it is more desirable to reduce the error image
into a single number, representing the overall perceived
difference. This can be accomplished using image statistics,

432 COLOR research and application



if care is taken. A common practice is to take the mean
CIEDE2000 of the image. While useful in providing an
overall idea, this can often lead to error masking. For
example, when reproducing an original image one imaging
system might cause large systematic shifts in hue while
another system causes more random individual pixel shifts.
It is possible for the two reproduced images to have equal
mean error, despite the large systematic shifts being more
perceptibly noticeable. The spatial filtering itself should
give greater weight to the lower frequency large shifts and
less weight to the individual pixels, but it is still possible to
have identical mean errors. This can be somewhat overcome
when comparing additional statistics such as the error vari-
ance, standard deviation, median, and other percentiles. The
error maximum is also sometimes examined, but the max-
imum is often not indicative towards the overall error trend.
The error maximum can be very valuable for detecting
threshold image differences.

Fig. 12 shows the filtered CIE �E*ab and CIE �E*94 error
images for the same image pair.

For comparison, the image statistics produced from using
three CIE color difference formulae are shown in Table III.
It should be noted that both CIE �E*94 and CIEDE2000
errors tend to be smaller than the standard �E*ab, due to the
parameter weighting functions. An interesting note is the
closer grouping of all the CIEDE2000 errors, as shown by
the lower error standard deviation.

Viewing Distance and Resolution Dependence

The spatial filtering pre-processing accounts for the spa-
tial properties of the human visual system by removing error

information that is not visible to the observer. As such, the
viewing conditions in which the images are viewed are very
important and can greatly influence the color difference
calculation. The error images for three different viewing
conditions corresponding to 10, 50, and 100 pixels-per-
degree were calculated, and are shown in Fig. 14.

The error images are very different, depending on the
viewing conditions. At 10 pixels-per-degree the halftone
pattern is clearly noticeable. This pattern is much less no-
ticeable at 50 pixels-per-degree, and practically disappears
at 100 pixels-per-degree. This corresponds with the general
behavior of halftone images. It is important to note that the
error images shown in Fig. 14 have been normalized by the
maximum error to illustrate the error pattern. The image
statistics also illustrate the importance of viewing distance
in S-CIELAB calculations. Table IV shows the mean and
standard deviation of the CIEDE2000 color differences cal-
culated for the three viewing conditions.

The average color difference between the original and the
halftone image is very large when viewed at a distance
corresponding to 10 pixels-per-degree. This difference is
decreased greatly when viewed at 50 pixels-per-degree, and
even more so when viewed at 100 pixels-per-degree.

CONCLUSION

An overview of using the state-of-the-art color difference
formula along with a pre-processing spatial filtering for

FIG. 12. CIEDE2000 Error Image.

TABLE III. Image statistics for CIE color difference
formula.

Color difference
formula Mean Std Dev Median

�E *ab 6.45 10.48 2.40
CIE �E *94 5.07 8.50 2.03
CIEDE2000 4.21 5.49 2.08

FIG. 13. CIE �Eab and CIE �E94 (right) error images.
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comparing image color difference has been presented. The
basis of this technique is S-CIELAB along with
CIEDE2000. The benefits and pitfalls of performing the
filtering in the spatial domain, with a series of convolutions,
or in the frequency domain, with Fourier multiplication

have been described. When possible, it is advantageous to
perform these calculations in the frequency domain. Care
must be taken to maintain the DC component of the lumi-
nance channel, or large lightness shifts can occur. Finally,
we have discussed data reduction and compared the results
of three existing CIE color difference formula, and three
different viewing conditions.
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